Effective Positivity Problems for Simple Linear Recurrence Sequences
نویسندگان
چکیده
We consider two computational problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (determine whether all terms of a given LRS are positive) and the effective Ultimate Positivity Problem (determine whether all but finitely many terms of a given LRS are positive, and if so, compute an index threshold beyond which all terms are positive). We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy, and effective Ultimate Positivity is solvable in polynomial time.
منابع مشابه
Positivity Problems for Low-Order Linear Recurrence Sequences
We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomi...
متن کاملOn the Positivity Problem for Simple Linear Recurrence Sequences,
Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.
متن کاملUltimate Positivity is Decidable for Simple Linear Recurrence Sequences
We consider the decidability and complexity of the Ultimate Positivity Problem, which asks whether all but finitely many terms of a given rational linear recurrence sequence (LRS) are positive. Using lower bounds in Diophantine approximation concerning sums of S-units, we show that for simple LRS (those whose characteristic polynomial has no repeated roots) the Ultimate Positivity Problem is de...
متن کاملPositivity of Three-Term Recurrence Sequences
In this paper, we give the sufficient conditions for the positivity of recurrence sequences defined by anun = bnun−1 − cnun−2 for n > 2, where an, bn, cn are all nonnegative and linear in n. As applications, we show the positivity of many famous combinatorial sequences.
متن کاملDecision Problems for Linear Recurrence Sequences
Linear recurrence sequences (LRS), such as the Fibonacci numbers, permeate vast areas of mathematics and computer science. In this talk, we consider three natural decision problems for LRS, namely the Skolem Problem (does a given LRS have a zero?), the Positivity Problem (are all terms of a given LRS positive?), and the Ultimate Positivity Problem (are all but finitely many terms of a given LRS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.1550 شماره
صفحات -
تاریخ انتشار 2013